Formulation and Physical Properties of Cyanate Ester Nanocomposites Based on Graphene
نویسندگان
چکیده
We report the thermal, mechanical, and diffusion properties of bisphenol E based polycyanurate nanocomposites with three forms of graphene derived from sequential processing of the same carbon nanostructure. Edgefunctionalized graphene nanoplatelets (GNP) were converted to graphene oxide (GO), then heated to produce thermally reduced graphene oxide (TRGO). All three reinforcements were individually mixed with the dicyanate ester of bisphenol E (LECy) at low loading levels and cured to form polycyanurate nanocomposites. GNP, with very low oxygen functionality, was incompatible with the cyanate ester, while the highly oxidized GO formed well-dispersed (though not exfoliated) nanocomposites, with the TRGO forming a good dispersion on mixing but phase separating during cure. The addition of GO, and, to a lesser extent, TRGO, resulted in improved mechanical properties, particularly fracture toughness, with the addition of TRGO having a modestly negative effect on the glass transition temperature. Surprisingly, neither GO nor TRGO addition was effective at slowing down the diffusion of water in the polycyanurate, with the addition of both resulting in increased equilibrium moisture uptake. It thus appears that the trade-off between dispersion and the required level of oxygen functionality acts in a manner to frustrate attempts at minimizing the permeation of water by addition of graphene-based reinforcements. VC 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 00, 000–000
منابع مشابه
cyanate ester based multifunctional nanocomposites for structural capacitors
Two multifunctional cyanate ester based composites with nanofillers of core-shell microstructures were synthesized and investigated for dielectric, mechanical, and other particular properties for the application of multifunctional structural capacitors. The weight reduction and device integration in spacecraft can contribute to significant energy saving by employing multifunctional structural c...
متن کاملHybrid Network Structure and Mechanical Properties of Rodlike Silicate/Cyanate Ester Nanocomposites
Silicate nanorods (attapulgite, ATT) were organically modified and homogeneously dispersed in a cyanate ester (CE) resin. ATT dispersions and networks were characterized by rheological and microscopic measurements. Amine groups grafted onto the particle surface catalyzed the cyclotrimerization of the CE monomers and enabled the CE monomers to enter the inter-rod spacing of loose aggregates easi...
متن کاملLow dielectric and low surface free energy flexible linear aliphatic alkoxy core bridged bisphenol cyanate ester based POSS nanocomposites
The aim of the present work is to develop a new type of flexible linear aliphatic alkoxy core bridged bisphenol cyanate ester (AECE) based POSS nanocomposites for low k applications. The POSS-AECE nanocomposites were developed by incorporating varying weight percentages (0, 5, and 10 wt %) of octakis (dimethylsiloxypropylglycidylether) silsesquioxane (OG-POSS) into cyanate esters. Data from the...
متن کاملSynthesis and Characterization of Graphene-ZnO Nanocomposite and its Application in Photovoltaic Cells
In this paper, we present a simple method for preparation of graphene-ZnO nanocomposites (G-ZnO). The method is based on thermal treatment of the graphene oxide (GO)/ZnO paste which reduces the graphene oxide into the graphene and leads to the formation of the G-ZnO nanocomposite. The structure, morphology and optical properties of synthesized nanocomposites are characterized with XRD, FESEM, F...
متن کاملMechanical Properties of Graphene/Epoxy Nanocomposites under Static and Flexural Fatigue Loadings
In the present study, the effect of various weight fractions of graphene nanoplatelet (GPL) on flexural fatigue behavior of epoxy polymer has been investigated at room temperature and generally the temperature was monitored on the surface of specimen during each test. The flexural stiffness of grapheme nano-platelet/epoxy nanocomposites at 0.1, 0.25 and 0.5 wt. % as a main effective parameter o...
متن کامل